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Abstract
The world is experiencing a cancer epidemic and an increase in the prevalence of the disease. Cancer remains a major killer, 
accounting for more than half a million deaths annually. There is a wide range of natural products that have the potential 
to treat this disease. One of these products is artemisinin; a natural product from Artemisia plant. The Nobel Prize for 
Medicine was awarded in 2015 for the discovery of artemisinin in recognition of the drug’s efficacy. Artemisinin produces 
highly reactive free radicals by the breakdown of two oxygen atoms that kill cancerous cells. These cells sequester iron and 
accumulate as much as 1000 times in comparison with normal cells. Generally, chemotherapy is toxic to both cancerous 
cells and normal cells, while no significant cytotoxicity from artemisinin to normal cells has been found in more than 4000 
case studies, which makes it far different than conventional chemotherapy. The pleiotropic response of artemisinin in cancer 
cells is responsible for growth inhibition by multiple ways including inhibition of angiogenesis, apoptosis, cell cycle arrest, 
disruption of cell migration, and modulation of nuclear receptor responsiveness. It is very encouraging that artemisinin 
and its derivatives are anticipated to be a novel class of broad-spectrum antitumor agents based on efficacy and safety. This 
review aims to highlight these achievements and propose potential strategies to develop artemisinin and its derivatives as a 
new class of cancer therapeutic agents.
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WHO	� World Health Organization
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Introduction

Cancer is the foremost cause of deaths around the world. 
Approximately 14.1 million deaths were reported in 2012 
and there is an estimate of 20 million deaths in 2030. The 
death rate is increasing every year because of different 
forms of cancer including stomach, liver, lung, breast and 
colon cancer. Cancer cells are produced by the mutations or 
genetic factors attained by the cell due to external agents. 
According to the World Health Organization [1], up to 30% 
of deaths due to cancer can be prevented.

Drug resistance and significant levels of drug toxicity 
related to existing anticancer treatments are the main cause 
of difficulty in cancer control. The formulation of effective 
medications to reduce the cancer burden with insignificant 
side effects on healthy mammalian cells [2] is the most chal-
lenging task.

Self-reliance in growth signals, obdurate to growth-inhib-
itory signals, vesting replicative eternity, tissue invasion and 
metastasis, insistent angiogenesis, and evasion of apoptosis 
are main molecular and cellular hallmarks of cancer [3].

New chemotherapies are being investigated to treat malig-
nant tumors by investigating the anticancer potentials of 
novel compounds together with testing the anticancer prop-
erties of the drugs utilized for the treatment of other dis-
eases. Bioactive compounds isolated from natural resources 
are found most effective against tumours with the least side 
effects. Natural compounds in the herbal medications could 
contain potential anticancer compounds with minimum or 
no side effects at all. One of such compounds is artemisinin 
which is found in Artemisia plant and it has both antican-
cer as well as antimalarial effects [4]. Artemisinin and its 
derivatives pose promising anticancer activity against vari-
ous cancer cell lines [5–9].

Artemisinin is the most promising drug molecule isolated 
from Artemisia plants with minimum adverse effects [10, 
11]. WHO has approved it as an antimalarial drug and it 
is successfully used to treat malaria, cough, cold and diar-
rhoea. It is also used to treat hepatitis, cancer, inflammations, 
bacterial, fungal and viral infections, and has proven record 
for being anthelmintic, antiseptic, antipyretic, carminative, 
antispasmodic, stimulant and stomachic [12–14]. Among 
other properties of artemisinin in-vitro activity against HIV 
has also been found [15]. Artemisia plant is also effective in 
inhibiting osteoporosis and osteoclast induced bone diseases 
[16]. Artemisinin and its derivatives successfully prevented 
ovarian cancer growth and metastasis [17], breast cancers 
[18] and other variety of cancer types [4, 5, 7, 19–25].

This review will reexamine some of the critical issues 
in the implementation of artemisinin and its derivatives as 
anticancer agents. Moreover, this review will also explore 
the mechanisms of their antitumor effects in the light of new 
research. Furthermore, current and future development of 
artemisinin by considering its limitations and benefits will 
be highlighted to assess its importance in the field of cancer 
drug discovery.

Mechanism of action of artemisinin and its 
derivatives in cancer pathway(s)

Artemisinin is one of the bioactive molecules belonging to 
an effective family of anticancer agents. Its isolation and 
characterization is considered one of the most novel dis-
coveries in recent research into medicinal plants. In 1972, 
it was isolated and characterized from Artemisia annua L 
plant [26], and its structure was analyzed by X-ray analysis 
in 1979 [27].

Artemisinin is an endoperoxide sesquiterpene lactone. 
The empirical formula of Artemisinin is C, H, O and has 
a unique structure lacking nitrogen-containing heterocyclic 
ring. Numerous studies have widely documented the anti-
cancer effects of artemisinin and its derivatives. The mol-
ecule is potent against various cancers namely breast cancer 
[28–31], lung cancer [31, 32], prostate cancer [31, 33], head 
and neck cancer [34], bladder and renal cancer [31], ovarian 
cancer [35] cervical carcinoma [36], pancreas carcinoma 
[37], colon carcinoma [31], thyroid medullary carcinoma, 
endometrial and oral squamous carcinomas [34].

Endocytosis of artemisinin and derivatives and iron

Artemisinin permeates through the cell membrane due to its 
hydrophobic nature and induces its anti-cancer actions. A 
significant number of pharmacological studies [4, 24, 38, 39] 
have demonstrated the mechanism of action of artemisinin 
against different cancer types. Usually, cancer cells require 
vast quantities of iron for their proliferation and have trans-
ferrin receptors that are involved in endocytosis and uptake 
of the plasma iron-carrying protein. The endoperoxide moi-
ety of artemisinin reacts with the iron in cancer cells to pro-
duce ROS (Reactive Oxygen Species) including superoxide 
and hydroxyl radicals which elicit cellular destruction.

Artemisinin and iron are transported into the cell and 
artemisinin-transferrin conjugate causes the release of iron 
which reductively cleaves the artemisinin molecule and pro-
duces the destructive free radicals [5–7, 40–43]. Therefore, 
artemisinin transforms into cytotoxic carbon because of free 
iron centred radicals for cellular destruction. Consequently, 
artemisinin and artemisinin-tagged iron-carrying molecules 
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are very selective and effective and can be altered to develop 
powerful anticancer drugs [44, 45].

Artemisinin and artemisinin-based synthetic dimers are 
also known to effectively reduce cell propagation, angiogen-
esis and induce apoptosis in cancer cells [4, 5, 7, 46–50].

Artemisinin and its derivatives stop multiplication 
of cancer cell

Artemisinin compounds impart cytotoxic and cytostatic 
effect on cancer cells. To regulate cell division, inhibitors 
involving the Cyclin-dependent kinase (CDK) associated 
protein (CIP)/kinase-inhibitory protein (KIP) such as p57, 
p27 and p21 [51] play a modulatory role. Artemisinin and 
its derivatives affect the cell division by intervening the 
different stages of the cell cycle. Growth arrest induced 
by artemisinin has commonly observed at G0/G1 to S 
transition,however, growth arrest at all cell cycle phases has 
been commonly observed [52].

Cell cycle arrest

Artemisinin and its derivatives exert their proliferation 
inhibitory activity on tumours by distressing different stages 
of the cell cycle. Generally, G0/G1 or S phase inhibition is 
the most common target, through an alteration in the activity 
and expression of cell cycle regulatory enzymes [53–55]. 
Dihydroartemisinin mediated cell cycle arrest (G0/G1 phase) 
through downregulation of cyclins and CDKs. DHA exhib-
its its effect by reducing the activity of the CDK promoter 
or increasing the potential of CDK inhibitors [56]. Arte-
misinin can inhibit CDK-4 gene expression directly [57]. 
Artesunate obstructs the regulators of the mitotic spindle 
checkpoint in the G2/M phase such as Bub3, Mad3,andMad2 
[58]. The proliferation of pancreatic cancer can be prevented 
by dihydroartemisinin through inhibition of the activity of 
nuclear transcription factor NF-κB [59]. ART and DHA 
induced apoptosis in human hepatoma cells through a cas-
pase-dependent mitochondrial pathway, arresting G1-phase 
by regulating G1-checkpoint proteins in vivo [56]. DHA 
arrested lung cancer A549 cell cycle at the G1 phase and 
inhibited cell proliferation through downregulation of the 
AKT/Gsk-3β/ cyclinD1 signalling pathway. It also medi-
ated apoptosis by overexpressing the ratio of Bax/Bcl-2 and 
active caspase-3 and cytochrome-c [60–62]; (Table 1).

Induction of apoptosis

ARTs have been studied to hold apoptosis prompting char-
acteristics in countless cancer cell lines by regulating proa-
poptotic and antiapoptotic genes [19, 20, 54, 60, 61, 66, 69]. 
Artesunate helps in proliferation inhibition and induction of 
apoptosis mainly through iron transporters [75, 76].

Improvement of cell pro-apoptotic protein Bax and down-
regulation of antiapoptotic protein Bcl-2 can be controlled 
by dihydroartemisinin by enhancing Fas and activating cas-
pase-8. Inhibition of translocation as well as DNA-binding 
activity of nuclear factor-κappa gene (NF-κB) can also be 
improved by DHA [35, 59, 77, 78]. It has also been dem-
onstrated that apart from apoptosis, dihydroartemisinin 
also participates in the programmed cell death process of 
autophagy [79, 80]. Also, DHA treatment in HeLa, HCT116, 
HepG2 and SKOV3 cell lines caused stress-inducible protein 
p8 to be upregulated along with the upregulation of ATF4 
and CHOP expressions, these events lead to autophagy [81, 
82].

Induction of autophagy and ferroptosis 
(iron‑dependent cell death)

Autophagy in cancer is regarded as bearing both prosur-
vival and tumour suppressive functions [83] and ARTs have 
shown effectiveness in autophagy modulated cell death [66, 
81, 84, 85]. Artesunate prompts cell cycle arrest in the 
G2/M phase by increasing the expression of the initiator of 
autophagy i.e. Beclin1 [86].

Artemisinin has been linked to non-apoptotic cell death 
called ferroptosis which is a form of iron dependant cell 
death [87, 88]. Since ARTs induces iron-dependent cyto-
toxicity, they have been linked to causing ferroptosis [89].

Inhibition of tumour angiogenesis

ARTs have proved to be good candidates in the inhibition 
of tumour angiogenesis by down-regulating the production 
of growth factors and up-regulating the inhibitory factors. 
To further progress and metastasize, malignant tumours 
undergo neovascularization. This is controlled by proan-
giogenic signals including growth factors and cytokines, 
for example, VEGF (vascular endothelial growth factor), 
basic bFGF (fibroblast growth factor), IL-1 (interleukin-1), 
IL-8, angiopoietin, MMPs (matrix metalloproteinases), 
antiangiogenesis factors like the endostatin, angiostatin, 
TIMPs (tissue inhibitor of matrix metalloproteinases), etc. 
[88]. Meanwhile, angiogenesis is critical in cancer progress 
and metastasis, consequently one major approach of cancer 
chemotherapy is its inhibition [90].

Among artemisinin derivatives, DHA and especially 
artesunate are the most ideal candidates for cancer treatment. 
DHA inhibits angiogenesis through the NF-κB pathway [67, 
91]. Artesunate achieves its inhibitory effect on angiogen-
esis by targeting molecules like EGF, VEGF, VEGFR, etc.
[63, 77, 78, 92–94]. Artemisinin, dihydroartemisinin and 
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artesunate repress Wnt/β-catenin pathway through β-catenin 
downregulation [55].

Altered cancer metabolism

The remarkable difference between the metabolic pathways 
of normal and cancer cells can serve as an active target for 
cancer therapy. ARTS have shown an indication of being 
a good cancer-specific modulator of glucose metabolism. 
Artemisinin inhibited glycolytic metabolism by inhibition 
of glucose uptake through the reduction in the glucose 
transporter GLUT1, altering lactate production and reduc-
ing ATPS in NSCLC cell lines [95, 96] demonstrated similar 
effects with dihydroartemisinin, a derivative of artemisinin.

Some proteomics studies performed by [97] on human 
bronchial epithelial cells identified about 8 artesunate inter-
acting enzymes that were crucial for glucose metabolic path-
ways. Artemisinin has shown similar outcomes/results by 
interacting with 11 target enzymes of the cancer pathway 
[98].

Anticancer activities of the derivatives 
of artemisinin

Artesunic acid (Artesunate) in the treatment 
of cancer

Besides artemisinin, derivatives of artemisinin are also con-
sidered as natural antimalarial [99] and anticancer agents 
[47, 100]. In primary cell lines and cancer cultures, their 
antitumor activities were evident as they prevented cancer 
metastasis, proliferation and angiogenesis [42, 101]. Chatur-
vedi et al. [102] summarised that the antitumor properties of 
artemisinin derivatives on the development and characteri-
zation of several artemisinin combinations including two, 
three, or four monomers are possible ‘leads’ for anticancer 
drugs. Artesunate has proven for cytotoxic effects against 
ovarian, breast, colon, melanoma, leukemia, renal and 
prostate cancer cell culture [4–7, 103]. Recent studies have 
revealed that artesunate could efficiently delay the growth 
rate of leukemia (J-Jhan), colon carcinoma (HCT-116), 
small-cell lung carcinoma (H69) and glioma (U251) cancer 
cell cultures by promoting M/G2 phase cell cycle arrest [58]. 
Artesunate treatment with glioma cells followed by irradia-
tion showed enhanced apoptotic activity, M/G2 arrest and 
higher DNA damage as presented by an increased quantity 
of cH2AX nucleus/foci [104].

Artesunate has proved itself as an effective antitu-
mor agent with IC50 values of 2.69 μM as compared with 
artemisinin (IC50 > 50 μM) against the cell line of neu-
roblastoma. It was also found that artesunate may acti-
vate caspase-3, which is responsible for apoptosis in both Ta
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chemoresistant and chemosensitive neuroblastoma cell lines 
[105]. Artesunate can induce apoptosis in breast cancer cells 
(T47D, MCF-7 and MDAMB231) and leukemia cells (J16, 
CEM and Molt4) through Fe dependent ROS generation 
along with cytochrome c dynamic release and breakdown 
of different procaspases [103, 106–108]. Nevertheless, some 
reports are suggesting that along with apoptosis, artesunate 
also induced necrosis in some pancreatic cancer cells lines 
including CFPAC-1, BxPC-3 and Panc-1 [109].

Numerous reports have demonstrated that artesunate is 
well correlated with differentially regulated 30 genes of 
angiogenesis in different human cancer cell cultures [110, 
111]. Artesunate has significant and independent anticancer 
action and can reduce tumours to minimize the potential risk 
of hepatic metastases [112, 113]. Concentration-dependent 
inhibition of angiogenesis was reported for the artesunate 
with the range of 12.5–50 µM [114]. Nude mice (BALB/c) 
induced with ovarian cancer (HO-8910) expressed enhanced 
levels of VEGF along with KDR/flk-1 receptors. Artesu-
nate at the concentration of 50 mg/kg/d can suppress the 
amount of VEGF, KDR/flk-1 receptors and can also reduce 
the growth of tumours [33]. Artesunate also prevents VEGF 
expression and prevents angiogenesis in myeloid leukemia 
cells (K562) [115]. In human endothelial cells of the umbili-
cal vein, apoptosis induced by the artesunate is connected 
with its regulation of Bcl-2 and enhanced regulation of BAX 
[32]. Youns et al. [116] reported that artesunate can act as 
a key topoisomerase IIa blocker which suppresses pancre-
atic cancer development by regulation of multiple signalling 
pathways.

Similarly, in the lung cancer cell (H1299 and H460), 
artesunate prevented the metastasis by evading NF-κB and 
MMPs pathways [117]. In human low differentiated colo-
rectal carcinoma culture, artesunate upregulated E-cadherin 
which indicated blocking of Wnt-signaling pathway leading 
towards apoptosis of tumor cells [118]. A review of the liter-
ature would suggest that conjugation of transferrin with arte-
misinin derivatives shows higher anticancer potential [38, 
119–121]. Iron(II) glycine sulphate is known to increase the 
anticancer activity of free artesunate toward U373 astrocy-
toma cell line and CCRF-CEM leukemia cell line 1.5–10.3 
fold compared to the molecules without iron [40]. Combine 
action of artesunate with Glioblastoma multiforme cells and 
OSI-774 which is an inhibitor of tyrosine kinase has shown 
supra additive reduction of tumor cell growth in U-87MG, 
G-599GM, G-210GM [40].

In a case report, 70% tumor inhibition of laryngeal squa-
mous cell melanoma was recorded in the artesunate treated 
patients [122]. Moreover, artesunate has the potential to 
reduce tumor size and enhance the survival of the patients 
suffering metastatic uveal carcinoma [123]. In a randomized 
controlled trial including 120 patients having lung cancer, 
the control group (60 patients) was treated with standard 

chemotherapy (cisplatin and vinorelbine) and the rest of the 
patients (60) were given 120 mg artesunate intravenously 
along with chemotherapy. The 60 patients dosed with artesu-
nate showed enhanced short-term and long-term (up to 1 
year) survival rates, an increase in cancer progression time 
and minimal detectable side effects when compared to the 
control group [124].

Dihydroartemisinin (DHA) in the treatment 
of cancer

DHA is one of the most potent derivatives of artemisinin 
[42] which can induce cell apoptosis just after twelve-hour of 
the treatment. Artemisinin could produce the same apoptotic 
effect when it is used 10 times more in quantity compared 
to DHA [19, 20]. The main apoptotic responses driven by 
DHA are connected with the activation of the caspase-9 or/
and caspase-3 [28, 125–127]. Treatment of the cancer cells 
with DHA also increases the pro-apoptotic protein BAX and 
reduces the levels of BCL2 in Hep3B and HepG2 cells [56]. 
In the PC14 cell line (lung cancer), DHA induced apoptosis 
and also enhanced p38 MAPK (mitogen-activated protein 
kinase) phosphorylation [128]. Additionally, DHA induced 
prominent apoptosis in HCT116 and HL-60 cancer cell lines 
and permanently down-regulates the c-myelocytomatosis 
(c-MYC). These findings are consistent with persistent G1 
phase arrest mediated by DHA [125, 127]. Low doses of 
DHA showed more inhibitory effects in hypoxia, while high 
doses were more effective in normoxia [129]. Induction of 
apoptosis by DHA treatment was connected to the release 
of cytochrome c, mitochondrial membrane depolarization, 
DNA fragmentation and activation of caspases [130, 131].

DHA exhibited antitumor response against ovarian, 
breast, glioma, colon, lung and pancreatic cancer cells 
[19–24]. DHA showed anti-cancer action through G2/M cell 
cycle arrest against ovarian cells (OVCA-420) [35]. On the 
other hand, in AsPC-1 and BxPC-3 (pancreatic cancer, DHA 
induced G0/G1 progression towards S-phase. In this case, 
DHA decreased the expression of cyclin E CDK6, CDK4, 
CDK2 and NF-κB activity,nevertheless increased the p27 
expression [77, 78]. In another report, DHA reduced the 
levels of MMP9 or/and MMP2, metastasis in HO8910PM 
(ovarian cancer) and in pancreatic cancer cells (BxPC-3 and 
PANC-1) through NF-κB inhibition [68, 132–134]. In con-
trast, DHA significantly reduced HCC tumor growth both 
in vivo and in vitro by activating cell cycle arrest at G2/M 
and cell apoptosis. The inhibition of cyclin B, induction of 
p21 pathway and blocking of CDC25C all participated in 
ultimate G2/M arrest by DHA. The inhibition phenomenon 
includes induction of K562 and downregulation of TfR 
expression resulting in the growth arrest of the G2/M phase 
[135].
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DHA strongly suppressed angiogenesis in a concentra-
tion-dependent manner with 2.5–50 µM range [114]. Pro-
liferation and migration of endothelial cells on a fibronectin 
matrix in a human was evaluated and data showed signifi-
cant anti-angiogenic activity with DHA treatment [23, 136]. 
Studies on rat glioma cancer cell lines suggest that DHA 
may cause ROS production possibly by genotoxic damage 
[54]. In MCF-7 (breast cancer) cell lines, DHA conjugated 
with transferrin and demonstrated 280 times higher antitu-
mor activity than normal breast cells [137] which proved the 
synergistic effect of DHA [56].

Artemether and arteether in the treatment 
of cancer

Oral administration of artemether for over a period of 
12 months, helps in the reduction of tumour density [138]. 
In vitro, studies reported that artemether has a suppres-
sive effect against alloantigen mediated splenocyte prolif-
eration. Artemether upregulates the production of different 
cytokines including IL-2 and IFN-γ, and it is also responsi-
ble for the cell cycle arrest through G0/G1 transition. Fur-
ther, artemether showed impairment of both antigens- and 
anti-CD3-induced phosphorylation of extracellular signal-
regulated kinases (ERK). Artemether is responsible for the 
inhibition of anti-CD3 mediated phosphorylation of Raf1 
protein along with activation of Ras protein in primary 
T-cells [72]. Artemether also suppress the growth of tumor 
cells in BALB/c mice by depleting splenic Foxp3+, CD4+, 
CD25+and regulatory T-cells, and increasing the expres-
sion of IL-4 in splenic cells [139]. Moreover, artemether 
displayed a reduction of ConA mediated T-cell expression 
up to IC50 of 3.8 × 10–6 µg ml−1 and inhibition of LPS medi-
ated B-cell expression up to IC50 of 1.8 × 10–6 µg ml−1 [102]. 
In another study, artemether exhibited strong inhibitory 
effects in MTT assay on C6 glioma cells in brain tumour-
bearing SD rat and authors suggested that artemether pen-
etrated the blood–brain barrier to inhibit angiogenesis [73]. 
Different assays were conducted to evaluate the genotoxic 
and cytotoxic potential of artemether in gastric carcinoma 
(PG100) and the results revealed that artemether mediated 
necrosis in lymphocytes at concentrations of 238.8 µg ml−1 
and 477.6 µg ml−1 in PG100 cell lines [140]. Cytotoxic 
potential of artemether was tested against lung carcinoma 
(A549) and IC10 value was obtained at different concentra-
tions of artemether using the MTT test. The results suggest 
that artemether decreased cell survival in a concentration-
dependent manner with an IC10 value of 28.9 μM which was 
lesser than artemisinin (43.7 μM) [141].

Artemether, as well as arteether, also displayed anticancer 
response against CNS, ovarian, breast, prostate and renal 
carcinomas [28, 38]. Artemether and arteether exhibited 
anticancer activities at 10 µmol L−1 for 24 h exposure on 

cell survival of adenoma cells OVCAR-432 and SK-OV-3 
of human ovarian in MTT assays. This lead to the reduc-
tion of cells viability ~ 35–40%, which was comparable 
to the reduction in the cells viability by artemisinin [74]. 
Efferth and Oesch [142] documented the anticancer effects 
of artemisinin, arteether and artemether against 60 cancer 
cell cultures along with anthracyclines. They also compared 
the IC50 values of anthracyclines and artemisinin with the 
expression of mRNA from 170 genes responsible for oxygen 
tension response and metabolism. Artemether and arteether 
reveal remarkable antineoplastic activity through simple 
mechanisms of tumor cell inhibition in which genes respon-
sible for cellular expression may play a prime role [38].

Synergistic effect of artemisinin, its 
derivatives and flavonoids on cancer

Phenolics are aromatic organic compounds with a benzene 
ring attached to one hydroxyl group [143]. Phenolics have a 
unique position among natural products owing to their ubiq-
uitous distribution in the plant kingdom. They are protective 
against a broad range of ailments including coronary heart 
diseases, stroke and various types of cancer. They also pos-
sess antimicrobial, insecticidal, algicidal, estrogenic and ker-
atolytic activities [144]. The hydroxyl groups of phenolics 
donate hydrogen ions, thus scavenging ROS and stopping 
the cycle of the generation of new free radicals. They can 
inhibit free radical-mediated oxidative damage to the bio-
macromolecules e.g. lipids, proteins and DNA. They also 
inhibit the enzymes involved in new free radical production 
[144].

Polyphenols are a class of phenolic compounds that 
characteristically contain more than one phenol group in 
the molecule and they are good antioxidants as they tend to 
retard the detrimental effects of free radicals [145]. Polyphe-
nols are sub-classified as tannins and flavonoids. Tannins 
are astringent and bitter compounds that mainly function 
in the binding or precipitation of proteins. If we look at the 
skeleton of Flavonoids (which belong to the polyphenols) it 
is a 15-carbon (C6-C3-C6) structure also known as hydroxy-
lated polyphenols [146]. Their amount varies from species 
to species, also based on stages and conditions of the plant 
growth [147]. They are ubiquitously found in plants mainly 
produced by the phenylpropanoid pathway in response 
to microbial infection. They have a diverse function with 
structure-dependent characteristics. The antioxidant effect 
of flavonoids is mediated by the hydroxyl group attached, 
which act as scavengers of free radicals and metal chelators 
[148]. Regarding the chemical structure of flavonoids, there 
is a backbone of the skeleton which contains fifteen-carbon 
molecules along with the presence of two benzene rings 
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Fig. 1   Flavonoid basic skeleton 
(a) and classification (b) [149]

Fig. 2   Flavonoids sources and health benefits [150]
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(A and B) connected through a heterocyclic pyran ring (C) 
(Figs. 1a) and 2.

There are numerous classes of flavonoids as shown in 
Fig. 1b. Their general structures are given in Fig. 3. The 
distinction in the classes of flavonoids is mainly due to the 
difference in the oxidation level and the way ring C is sub-
stituted, whereas different molecules inside a class vary in 
the replacement pattern of the A and B rings [150].

Over 4500 different flavonoids have been reported in 
plants [146]. The genus Artemisia consists of more than 300 
species and is one of the richest sources of these flavonoids 
[145]. Within this genus, A. annua is the most extensively 
studied species from which around 50 flavonoids have been 
isolated, however, several flavonoids have been detected in 
other species too like A. absinthium L. [152, 153], A. asi-
atica [154], A. herba-alba [155], A. abrotanum [156], A. 
lactiflora [157] and A. sphaerocephal [130, 131]. Phenolics 
isolated from A. annua have been summarized in the scheme 
shown in Fig. 4.

Potential synergistic interactions among anticancer and 
antimalarial drugs including flavonoids and artemisinin 
respectively have not been entirely investigated. It could prove 
appreciable to search the treatment against cancer by exploring 
the biological effect of flavonoids, artemisinin and its poten-
tial derivatives [145]. The combination of flavonoids along 
with artemisinin might improve the efficacy of artemisinin. 
The well-known anticancer effects of flavonoids state that 
iron and copper metals are chelated during this activity of 
flavonoids [158]. In that regard, flavonoids could assist arte-
misinin by converting Fe+3 to Fe+2, the latter being impor-
tant in the biological activity of artemisinin [40], leading to 
the release of momentary toxic free radicals that are part of 

the antimalarial and anticancer mode of action of artemisinin. 
Furthermore, the anti-cancer activity of artemisinin can be 
significantly improved by the flavonoids in terms of bioavail-
ability and serum shelf-life [159], hindering metabolically 
active enzymes [160] or by targeting important anti-apoptotic 
and pro-apoptotic factors in different cancer cells. To date, 
there is only a single report stating the synergism between 
flavonoids and artemisinin treatment against cancer cell lines. 
In that report, Resveratrol was combined with Artemisinin and 
tested against HepG2 and HeLa cell cultures for hepatoma and 
cervical cancers respectively. The combination significantly 
increased apoptosis as well as necrosis in two tested cancer 
cell cultures [161, 162]. Moreover, pterostilbene was found 
to be toxic to the normal hematopoietic cells very minutely. 
There are some reports which also support potential synergism 
between artemisinin and flavonoids [163, 92]. It is found that 
both A. annua and A. carvifolia extracts contained flavonoids 
in methanolic and artemisinin in n-hexane fractions and both 
of the fractions inhibited proliferation of HeLA, MCF7 and 
HePG2 cancer cell lines individually. When cancer cells were 
treated with both fractions combined, an enhanced effect was 
observed compared to individual fractions, thus providing an 
enhanced synergistic anticancer activity, also supported by the 
findings of Tolomeo et al. [93].

Although there is a possibility that synergism can some-
times result in drug overdose, its positive features can still 
be discovered to increase the bioavailability of a drug with 
a wider protective margin such as artemisinin [145]. There-
fore, further investigation should be carried out on the posi-
tive interactions between artemisinin and these natural anti-
oxidant metabolites.

Fig. 3   Structure of different 
classes of flavonoids [151]
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Combination therapy and nano‑targeted 
drug delivery system

Progress in the field of nanotechnology has opened up mas-
sive opportunities for functional combination chemother-
apy. Countless nanocarriers like liposomes and poly-drug 
conjugates have flagged their way into additive synergistic 
therapy. They not only lower the chemotherapeutic dose 
and toxicity but also change the physiochemical properties 
by modifying the bioavailability and biodegradability of 
therapeutic agents [94], 113]. ARTs encounter challenges 
in the design of drug delivery formulations despite their 
broad-spectrum anticancer therapeutics, because of their 
poor solubility and rapid degradation. To overcome these 
obstacles, several nano targeted drug delivery systems have 
been proposed for them [82]. Combination therapy of ARTs 
with known cancer drugs have proved to be an excellent 
therapeutic combination, for example, DHA in combina-
tion with doxorubicin significantly enhanced the effective-
ness of DOX in MCF-7 cells [80] while the combination of 
Paclitaxel with artemether loaded in liposome nanostructure 

proved to be a good option in enhancing their therapeutic 
value while decreasing toxicity [161, 162]. Transferrin 
loaded magnetic nanoliposomes were used in combination 
therapy with artemisinin. Their cytotoxicity in breast can-
cer cell line MCF-7 and MDA-231 resulted in an increased 
antiproliferative effect than their individual effects [82]. A 
similar effective drug delivery system was acknowledged for 
artemether, with its activity enhanced by transferrin loaded 
lipid nanospheres [62]. The biodegradable polymer Poly-D, 
L-lactic-co-glycolic acid (PLGA) was used as a nanocarrier 
for the artesunate, increasing its half-life [171].

Combination therapy is the most effective way to treat 
major diseases and a combination of two or more antican-
cer agents using ARTs has proved to be more effective for 
chemotherapeutics. Artesunate displayed a strong effect on 
cell proliferation and apoptosis in osteosarcoma cells when 
used in combination with Allicin (a compound derived from 
garlic) [26]. DHA’s synergistic effect with gemcitabine 
improved the therapeutic action in the pancreatic cancer 
model both in vivo and in vitro by the inactivation of the 
NF-κB pathway [59]. The synergistic effect of artesunate 

Fig. 4   A schematic diagram showing phenolics isolated from A. annua [145]
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in the inhibition of angiogenesis with various other agents 
is also reported [55, 157]. In breast cancer cells, DHA was 
found to be involved in inhibiting proliferation and cell cycle 
arrest involving the mitochondrial pathway by increasing the 
expression of pro-apoptotic gene Bim while decreasing the 
expression of the anti-apoptotic gene Bcl-2 [71].

Conclusions and perspectives

Artemisinin has been widely utilized as an antimalarial 
drug for many years. However, several of its other bio-
logical activities were reported in the previous years and 
among them anticancer activity was highlighted the most. 
Artemisinin and its derivatives served better in extremely 
metastatic and vigorous cancer growth with no side effects. 
In this regard, significant work has been done to evaluate 
the anticancer activity of artemisinin and its derivatives and 
promising results have been observed against cancer both 
in vitro and in vivo. Moreover, antimalarial endoperoxides 
might synergise with other anticancer drugs with negligible 
side effects. Similarly, the synergistic effect of A&D and 
flavonoids against cancer is yet to be investigated in detail 
and requires more attention from the scientific community.

Although the capacity of artemisinin to kill tumor cells 
is established but the mechanism and the molecular basis 
of artemisinin-initiated cell death need to be further inves-
tigated. In this regard, current research is focusing on the 
investigation of the mechanism of bioactivation and other 
molecular events together with new targets for artemisinin 
against cancer. The likelihood of artemisinin integration into 
the category of anticancer medications has opened the path 
for fact-finding exploration in this field and that would be 
helpful in various ways.
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